Reactive oxygen species as second messengers? Induction of the expression of yeast catalase T gene by heat and hyperosmotic stress does not require oxygen.
نویسندگان
چکیده
It is shown that oxygen is not absolutely needed for stress-induced synthesis of catalase T in the yeast Saccharomyces cerevisiae. Yeast cells develop heat resistance after exposure to elevated temperatures in anoxia. The levels of catalase activity and thermotolerance are comparable to those in aerobically stressed cells. While these results obviously do not exclude a stress signaling role of reactive oxygen species in some systems, as postulated by other authors, they suggest that the question of the obligatory requirement for reactive oxygen species in other stress signaling systems should be rigorously re-investigated.
منابع مشابه
Catalase and Metallothionein genes expression analysis in wheat cultivars under drought stress condition
Drought stress is one of the serious problems that restricted agronomic plant production worldwide. In molecular level, the harmful effect of drought stress is mostly caused by producing of large amount of reactive oxygen species (ROS). Catalase and Metallothionein genes have a crucial role to mope the hydrogen peroxide (H2O2) resulting reducing oxidative damage. In this research the gene expre...
متن کاملYCF and YAP gene expressions in yeast cells after irradiation combined with mercury treatment
Background: All aerobically growing organisms suffer from exposure to oxidative stress, caused by partially reduced forms of molecular oxygen, known as reactive oxygen species (ROS). These are highly reactive and capable of damaging cellular constituents such as DNA, lipids and proteins. Consequently, cells from many different organisms have evolved mechanisms to protect their components...
متن کاملنقش استرس اکسیداتیو در تکثیر بیرویه و مرگ سلولی
Abstract During normal cellular activities Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) are produced. In addition to beneficial functions they play a critical role in cell death and prevent apoptosis. Every cell is equipped with an extensive antioxidant defense system to combat the excessive production of active radicals. Oxidative stress occurs with destruction of cellu...
متن کاملIdentification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملIdentification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biochimica Polonica
دوره 47 1 شماره
صفحات -
تاریخ انتشار 2000